1. (a) (i) fractional distillation or fractionation
(ii) $\mathrm{C}_{9} \mathrm{H}_{20}$ only 1
(iii) $\mathrm{C}_{11} \mathrm{H}_{24}+17 \mathrm{O}_{2} \rightarrow 11 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O} \quad 1$
(iv) $\mathrm{C}_{11} \mathrm{H}_{24}+6 \mathrm{O}_{2} \rightarrow 11 \mathrm{C}+12 \mathrm{H}_{2} \mathrm{O} \quad 1$
(b) (1) $\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{7} \mathrm{H}_{16} \quad 1$
(ii) correctly drawn structure of methylpropene 1
(insist on clearly drawn C-C and C=C bonds)
(c) Any two from
o
o chemically similar or chemically the same or react in the same way
o
o same functional group
o
same general formula
differ by CH_{2}
(penalise same molecular formula or same empirical formula)
2. (a) (i) any two from:
show a gradation/trend/gradual change in physical properties/ a specified property
differ by CH_{2}
chemically similar or react in the same way
have the same functional group
(penalise 'same molecular formula')
(penalise 'same empirical formula')
(ii) fractional distillation or fractionation
(iii) contains only single bonds or has no double bonds
(credit 'every carbon is bonded to four other atoms' provided it does not contradict by suggesting that this will always be H)
(b) (i) the molecular formula gives the actual number of atoms of each element/type in a molecule/hydrocarbon/compound/formula (penalise 'amount of atoms') (penalise 'ratio of atoms')
(ii) $\mathrm{C}_{14} \mathrm{H}_{30}$ only
(penalise as a contradiction if correct answer is accompanied by other structural formulae)
(iii) $\mathrm{C}_{10} \mathrm{H}_{22}+5 \frac{1}{2} \mathrm{O}_{2} \rightarrow 10 \mathrm{C}+11 \mathrm{H}_{2} \mathrm{O}$ (or double this equation)
(c) (i) $\quad 1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}$
(or double this equation)
(ii) Platinum or palladium or rhodium
(iii) $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$ or
$2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$ or
(ignore extra O_{2} molecules provided the equation balances)
$\mathrm{C}+2 \mathrm{NO} \rightarrow \mathrm{CO}_{2}+\mathrm{N}_{2}$
(or half of each of these equations)
$\mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{NO} \rightarrow 8 \mathrm{CO}_{2}+121 / 2 \mathrm{~N}_{2}+9 \mathrm{H}_{2} \mathrm{O}$
(or double this equation)
3. (a) $\mathrm{C} 22.24 / 12=1.85 \quad \mathrm{H} 3.71 / 1=3.71 \quad \mathrm{Br} 74.05 / 79.9=0.927$ (1)
ratio $\mathrm{C}: \mathrm{H}: \mathrm{Br}=2: 4: 1 \quad \therefore \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br} \quad$ (1)
empirical mass $=107.9 \therefore$ mol formula $=215.8 / 107.9 \times \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2}$ (1)
must use \% to justify answer
or
C $(22.24 / 100) \times 215.8=47.99$ i.e. $48 / 12=4$ carbon atoms (1)
H (3.71/100) $\times 215.8=8.01$ i.e. $8 / 1=8$ hydrogen atoms (1)
$\operatorname{Br}(74.05 / 100) \times 215.8=159.8$ i.e. $159.8 / 79.9=2$ bromine atoms (1)
or
C $(48 / 215.8) \times 100=22.24 \%(1)$
H $(8 / 215.8) \times 100=3.71 \%$ (1)
Br $(159.8 / 215.8) \times 100=74.05 \%(1)$
(b) any two pairs of marks

1,1-dibromo-(2-)methylpropane (1)
graphical formula to suit $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHBr}_{2}$ (1)
1,2-dibromo-(2-)methylpropane (1)
graphical formula to suit $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{Br}) \mathrm{CH}_{2} \mathrm{Br}$ (1)
1,3-dibromo-(2)-methylpropane (1)
graphical formula to suit $\mathrm{BrCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$ (1)
allow unambiguous names
mark name and structure independently accept order of bromo / methyl reversed penalise once for each of
numbering from wrong end and di in dibromo omitted
$\max 4$
4. (a) 2-bromo-3-methylbutane
correct spelling each of bromo, methyl and butane (1) for numbers - 2 \& 3 either order (1)
(b) compounds with the same molecular formula / compounds or molecules with the same number and type of atoms not atoms or elements instead of compounds (1)
different structural formulae / different arrangement of atoms / different structures / different graphical (displayed) formulae / functional groups in different places (1)
5. 1(-)bromobutane
correct structure for 1-bromo-2-methylpropane
($C-C$ bonds must be clear where drawn)
6. (a) (i) compounds/mixtures/alkanes/hydrocarbons/molecules with a boiling point range/similar boiling point/similar number of carbon atoms/similar chain length;
(insist on "similar" rather than "same")
(ignore references to size or M_{r})
(penalise references to bond breaking/cracking as contradictions)
(ii) molecules have different boiling points/intermolecular forces/sizes/chain lengths/ M_{r};
(ignore references to melting points)
(credit the idea that molecules condense at different temperatures)
(iii) the column has a higher temperature at the base (Q of L mark)

OR
the column has a lower temperature at the top;
(the statement needs to be expressed in good English and show a clear understanding of the correct temperature difference) (penalise "negative OR positive temperature gradient" without qualification to what the candidate means, otherwise ignore) (ignore references to the boiling points of the molecules) (credit correct statements which use specific temperatures with a maximum temperature of $500^{\circ} \mathrm{C}$ at the base)
(b) (i) $\mathrm{C}_{8} \mathrm{H}_{18}+81 / 2 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+9 \mathrm{H}_{2} \mathrm{O}$;
(penalise the use of 'sticks' once on the paper, including the structures in the 2(a)(ii) and 2(c)(iii)mechanisms) (credit correctly condensed structures)
(c) cracking produces/makes ethene/propene/alkenes/motor fuels/petrol

OR
cracking makes more useful products/high(er) value products
OR
cracking satisfies the high demand for small(er) products;
(ignore the idea that cracking makes or leads to plastics or polyethene) (high demand needs to be qualified)
(d) zeolite

OR
aluminosilicate OR $\mathrm{A1}_{2} \mathrm{O}_{3} 1$;
(e)
alkene(s);
(credit "small or short chain alkenes")
(penalise "cycloalkenes")
(penalise additional types of compounds (e.g. branched alkanes)
as a
contradiction)
(do not credit examples or formulae, but ignore if these are correct and in addition to the word "alkene")
7. (a) $\mathrm{C}_{15} \mathrm{H}_{32}+23 \mathrm{O}_{2} \rightarrow 15 \mathrm{CO}_{2}+16 \mathrm{H}_{2} \mathrm{O}$

Products (1)
Balance (1)
If wrong reactant C.E
(b) Identity of product: CO or carbon monoxide (1)

Equation: $\mathrm{CH}_{4}+\frac{3}{4} \mathrm{O}_{2} \rightarrow \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$ (1)
Any balanced equation using CH_{4}, producing CO Not could also make $\mathbf{C}+\mathrm{CO}_{2}$
8. (a) Crude oil is heated to vaporise it / oil vaporised (1)
(Vapour passed into fractionating) tower / column (1)
Top of tower cooler than bottom
or negative temperature gradient (1)
fractions separated by b.p
OR condensed at different temperatures OR levels
OR low boiling fractions at the top
OR at the top small molecules or light components (1)
$\max 3$
(b) (i) Identify shortfall in supply - e.g. petrol / small molecules (1) Higher value products OR more useful products (1) OR cracking produces more of material (problem solving)
(ii) Motor fuels

Aromatic hydrocarbons
Branched alkanes / hydrocarbons
Cycloalkanes
Any two (2)
Ignore specific fractions, alkanes, shorter alkanes, penalise alkenes, and hydrogen
(c) Catalyst: Zeolite / aluminosilicate (1)

Conditions: High temp OR around $450{ }^{\circ} \mathrm{C}[300-600]^{\circ} \mathrm{C}$ NOT heat / warm (1)
Slight pressure [>1 atm ≤ 10 atm OR 1 megaPa, 1000 kPa] (1)
NOT high pressure
9. (a) (i) Kerosine or parafin (1)
(ii) Boiling point (1)
(b) (i) $\mathrm{C}_{19} \mathrm{H}_{40}(1)$
(ii) $\mathrm{C}_{16} \mathrm{H}_{34} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{9} \mathrm{H}_{20}$ or $\mathrm{C}_{16} \mathrm{H}_{34} \rightarrow 4 \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{6}$ (2)
10. but-1-ene (1)
11. (a) petrochemicals (1)

Kerosine or paraffin (1)
Power stations or ships (1)
(b) (i)

(ii)

(1)
(c) (i) $\mathrm{C}_{8} \mathrm{H}_{18}$ (1)
(ii) $\mathrm{C}_{12} \mathrm{H}_{26}$ (1)
12. (a) (i) Gas oil or diesel (1)
(ii) $\mathrm{C}_{16} \mathrm{H}_{34}(\mathbf{1}) \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+2 \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}$ eq $^{\mathrm{n}}$ (1)
(iii) To produce polymers (1)
(b) (i) large surface area (1) faster reaction (1)
(ii) $\mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{NO} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+12 \frac{1}{2} \mathrm{~N}_{2}$ (2)
13. (a) Missing fraction = naphtha (allow naphtha from list if not quoted kerosene (paraffin),

Mark order consequential on M1 (if no missing fraction

Negative temperature gradient on the column or temperature of column decreases upwards (1)
Larger molecules or heavier fractions condense at higher temperatures or lower down the column or reference to different boiling points (ignore mp) (1)
(b) Type of mechanism = (free) radical / homolytic fission - used in complete sentence phrase (1)

$$
\begin{array}{r}
\mathrm{C}_{21} \mathrm{H}_{44} \rightarrow 3 \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{9} \mathrm{H}_{20} \text { correct alkenes (1) } \\
\text { Accept } \mathrm{CH}_{2} \mathrm{CH}_{2} \& \mathrm{CH}_{2} \mathrm{CHCH}_{3} \text { all correct (1) }
\end{array}
$$

4

```
Catalytic converter (1)
uses Pt / Rh / Pd / Ir (wrong answer cancels a correct one) (1)
Provides active sites / reduces E E (1)
Forms N2}+\mp@subsup{\textrm{CO}}{2}{(1)
2NO}+2\textrm{CO}->\mp@subsup{\textrm{N}}{2}{}+2\mp@subsup{\textrm{CO}}{2}{}\mathrm{ (correct equation worth last 2 marks)
(1)
14. (a) pollutants: CO (1)

NO or \(\mathrm{NO}_{2}(\mathbf{1})\)
unburned hydrocarbons (1)
CO from incomplete combustion (1)
eg \(\mathrm{C}_{8} \mathrm{H}_{18}+81 / 2 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+9 \mathrm{H}_{2} \mathrm{O} \quad\left(\mathrm{eq}^{\mathrm{n}} 1\right)\)
NO from \(\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}\) (1)
spark (1)
\(\max 7\)
removal: reaction between \(\mathrm{NO}_{x}\) and CO or \(\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}\) to form harmless products (1)
\[
\begin{aligned}
& \mathrm{eq}^{\mathrm{n}}: 2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{~N}_{2}+2 \mathrm{CO}_{2}(\mathbf{2}) \\
& \quad \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{NO} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+12^{1 / 2} \mathrm{~N}_{2}(\mathbf{2})
\end{aligned}
\]
one of \(\mathrm{Pt} / \mathrm{Rh} / \mathrm{Pd}\) catalyst (1)
(b) Demand for heavy fraction: low or for petrol: high (1) Supply of heavy fraction: high or of petrol: low (1) larger Mr are less volatile/have higher bp (1) due to stronger intermolecular forces (1)4
15. Cracking (1)
radical mechanism (1)
Any two equations e.g \(\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{8} \mathrm{H}_{18}\)
\[
\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{6} \mathrm{H}_{14}(\mathbf{2})
\]
\(\mathrm{C}_{10} \mathrm{H}_{22}\) or larger alkanes: low demand/high abundance/less useful (1)
\(\mathrm{C}_{2} \mathrm{H}_{4}\) or smaller alkanes: high demand/low abundance/more useful (1)
Uses: ethene to make polymers/plastics/ethanol (1)
octane or smaller alkanes - for petrol or fuels (1)
8
16. (a) heated / vaporised / boiled
passed into column / tower
condense at different heights / liquefy at different heights
similar molecules (size, bp, mass) condense together / (1)
small molecules at the top and big molecules at the bottom
(b) larger (1)
reduces decomposition (1) 2
(c) (i) hexane or valid isomers (1)
propene (1) 2
(ii) \(\mathrm{C}_{3} \mathrm{H}_{6}(\mathbf{1}) \quad 1\)
(d) \(\mathrm{CHCl}_{3}(\mathbf{1})\)
\(\mathrm{C}_{2} \mathrm{HBrClF}_{3}\) or correct structural formula (1)
```

